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We also have, from reciprocity,
Ay By =A1Fpp
> A 0.8)(0.5
2 . (0805

Fp—t%
B=407 8T o

=0.425 [d]

Combining (b}, (c), and (d) gives
Fy3 =0.686 — 0.425=0.261
Finally,
Fi=1—F1—F3=1—-0425-0.261=0.314

This example illustrates how one may make use of clever peometric considerations to calculate
the radiation shape factors.

8-6 | HEAT EXCHANGE BETWEEN
NONBLACKBODIES

In addition to the assumptions stated above, we shall also assume that the radiosity
and urradiation are uniform over each surface. This assumption is not strictly correct. even
for ideal gray diffuse surfaces. but the problems become exceedingly complex when this
analytical restriction is not imposed. Sparrow and Cess [10] give a discussion of such
problems. As shown in Figure 8-24, the radiosity is the sum of the energy emitted and the
energy reflected when no energy is transmitted. or

J=€Ep+ pG [8-36]

where € is the emissivity and Ej, is the blackbody emissive power. Since the transmissivity
is assumed to be zero. the reflectivity may be expressed as

p=l—a=1—¢

so that
J=€eEp+(1—€)G [8-37]
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Figure 8-24 | (a) Surface energy balance for opaque material; (b) element
representing “surface resistance” i the radiation-network

method.
J=eE,+pG
. J
— o—AMNN—C
1-¢
£d
(a) ()

The net energy leaving the surface is the difference between the radiosity and the irradiation:

2 =J-G=eE+(1-96-G

Solving for G in terms of J from Equation (8-37).

€A

g=—-(Ep—J)

1—¢

or
Ey—J
g=—"—— [8-38]
(1—€)/eA

HEAT TRANSFER 235



Dr. Tadahmun Ahmed Yassen Oy deal et o

Now consider the exchange of radiant energy by two surfaces, A; and Aj. shown in
Figure 8-25. Of that total radiation leaving surface 1. the amount that reaches surface 2 1is

1AL Fp

and of that fotal energy leaving surface 2. the amount that reaches surface 1 is

DAy Py

Figure 8-25 | (a) Spatial energy exchange between two surfaces; (b) element
representing “space resistance” in the radiation-network
method.

|
LS P

o~ =1 Fia— A2 Fy
/,t ./ \\ e 24708071

q12 Jy gy
— O—AANA—O
1
4\ F ),
(5)
The net interchange between the two surfaces is
q1—2=hA1Fio — hA Py
But
Ay Fia=AxFn
so that
q12=(J1 — ) A1 F1a= ()1 — Jr) A2 Fay
or
Ly [8-39]
e 1/A1 F2 h
Epy — Ep
(net =
(1—e1)/e1A1+1/A1Fn +(1 —e2)/e2A2
o(T} - T5)

E= 8-40
(1—e1)/e1A1+1/A1F2+ (1 —e)/e2As [ ]
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A network for a three-body problem is shown in Figure 8-27. In this case each of the
bodies exchanges heat with the other two. The heat exchange between body 1 and body 2

would be
Ji—-h
TS
and that between body 1 and body 3.
-k
=4 1/A1F3

To determine the heat flows in a problem of this type. the values of the radiosities must be
calculated. This may be accomplished by performing standard methods of analysis used in
de circuit theory. The most convenient method is an application of Kirchhoff’s current law
to the circuit. which states that the sum of the currents entering a node is zero. Example 8-6
illustrates the use of the method for the three-body problem.

Figure 8-26 | Radiation network for two

surfaces that see each other
and nothing else.
et
—
B, i b4 E,
O—WWN—D0—WWV—0—"WWAV—0
1 = El I 1 —En

Figure 8-27 | Radiation network for three
surfaces that see each other
and nothing else.

)
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Insulated Surfaces and Surfaces with Large Areas

Figure 8-28 | Radiation network for two
plane or convex surfaces
enclosed by a third surface
that 1s nonconducting but
re-radiating (imsulated).

1—g,

AMWWN—C

potential difference. and J3 = Ej, . Notice also that the values for the space resistances have
been written

Fis=1—Fp2
Fy3=1-Fy
since surface 3 completely surrounds the other two surfaces. For the special case where sur-

faces 1 and 2 are convex. that is. they do not see themselves and Fi; = Foy =0.
Figure 8-28 is a simple series-parallel network that may be solved for the heat flow as

cAUT} —T3)

et = i
A =9
ELTe RN Y O
Ax — A1(F2)- €1 2 \e

[8-41]

where the reciprocity relation
A1 F1p = AxFn
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EXAMPLE 8.6 Hot Plates Enclosed by a Room

Two parallel plates 0.5 by 1.0 m are spaced 0.5 m apart, as shown m Figure Example 8-6. One
plate 15 mantamed at 1000°C and the other at 500°C. The emussivities of the plates are 0.2 and
0.5, respectively. The plates are located in a very large room, the walls of which are maintamed
at 27°C. The plates exchange heat with each other and with the room but only the plate surfaces

facing each other are to be considered in the analysis. Find the net transfer to each plate and to
the room.

Figure Example 8-6 | (a) Schematic. (b) Network.

T;=1000°C

/ Eh:(ﬂ"l# J 5 E,=0h
o 4
©
Roomat 27°C
T,=500°C
(a) ()

B Solution

This 15 a three-body problem, the two plates and the room, so the radiation network 1s shown 1n
Figure 8-27_ From the data of the problem

Ty =1000°C=123K  Aj=A;=05m?
T =300°C=773K €1 =02
T; =27°C=300K =05
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Because the area of the room A3z is very large. the resistance (1 — €3)/e3 A3 may be taken as zero
and we obtain Ej,, = J3. The shape factor Fj; was given in Example 8-2:

Fi3 =0.285=Fy;

Fi13=1—Fj2=0.715

Fy3 =1—Fy; =0.715

The resistances in the network are calculated as
=g 102 __ l1—-e 1—0.5

I I 2, = B .0
e1A1  (0.2)(0.5) €Az (0.5)(0.5)
! ! 7.018 ! ! 2.797
A Fj;  (0.5)(0.285) A1Fi3 (0.5)(0.715)

1 1

AsFy;  (0.5)(0.715)

Taking the resistance (1 — £3)/e3 A3 as zero, we have the network as shown. To calculate the heat
flows at each surface we must determine the radiosities J; and J,_ The network 1s solved by setting
the sum of the heat currents entering nodes J; and J; to zero:

nade Ji:
Ep, —J Jp—J Ep, —J
b —J1 2=h  Bu—d [a]
8.0 7.018 2797
node Jo:
h=h Bn—h. Ep—8 (5]
7.018 2797 2.0
Now

Ep, = oT{ =148.87 kW/m?> [47,190 Btu/h - ft*]
Ep, =0Ty =20.241 kW/m? [6416 Btu/h - ft?]
Ep, = 0Ty =0.4592 kW/m?® [145.6 Btu/h - fi’]

Inserting the values of Ej. Ep, and Ej, into Equations (a) and (b), we have two equations and
two unknowns J; and J, that may be solved simultaneously to give

Jy =33.469 kW/m> J, =15.054 kW/m’

The total heat lost by plate 1 1s

Ep, —Jy 148.87 — 33.469
gy = = =14.425 kW
(1—ep)fegAq 8.0
and the total heat lost by plate 2 is
Eg, — I 20.241 — 15.054
R I — 2594 kW
- (1—1‘52]{'6;_;4.2 2.0

The total heat received by the room is
BETAFs T 1Ay

33.469 —0.4592  15.054 —0.4592
- 2.797 ki 2.797

—17.020kW [58.070 Btu/h]

From an overall-balance standpoint we must have
43 =¢q1+t42

because the net energy lost by both plates must be absorbed by the room.
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EXAMPLE 8.7 Surface m Radiant Balance

Two rectangles 50 by 50 cm are placed perpendicularly with a common edge. One surface has
T; =1000 K, €; = 0.6, while the other surface is msulated and in radiant balance with a large
surrounding room at 300 K. Determine the temperature of the msulated surface and the heat lost
by the surface at 1000 K.

Figure Example 8-7 | (@) Schematic. (b) Network.

By, 5 5h=E,
O, ®
Room at 300 K
T,=1000K
Insulated g3 =Ey,
(@) ®»
B Solution

Although this problem mvolves two surfaces that exchange heat and one that 1s msulated or re-
radiating, Equation (8-41) may not be used for the calculation because one of the heat-exchanging
surfaces (the room) 1s not convex. The radiation network is shown i Figure Example 8-7 where
surface 3 is the room and surface 2 is the insulated surface. Note that J3 = Ep, because the room is
large and (1 — €3)/e3 A3 approaches zero. Because surface 2 1s insulated if has zero heat transfer
and Ja = Ep,  J; “floats” in the network and is determined from the overall radiant balance  From
Figure 8-14 the shape factors are

Because Fj; =0 and F5; =0 we have
Fio+ F13=1.0 and Fia=1—02=08=F3
A=Ay =(0.52=0.25m">

The resistances are

1—eq 0.4
= — 26567
EIA]_ (0.6)(0.25)
1 4 3 i
= = =5.0
A1F13 AQ F23 (0.25)(0.8)
1 1
=20.0

A1 F13  (0.25)(0.2)
We also have
Ep, = (5.669 x 10~8)(1000)* = 5.669 x 10* W/m?
J3 = Ep, =(5.669 x 10~8)(300)* = 459.2 W/m?

The overall circuit 1s a series-parallel arrangement and the heat transfer 1s

_ Ep, — Ep,
N Requiv
‘We have
Requiy =2.667 + — =6.833

1r1/00+5
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ond 56,690 —459.2
g=———"_3209kW [28,086Btu/h]
6.833
This heat transfer can also be written
- Ep, -1
(1-e1)/e1Ay
Inserting the values we obtain

Jy =34,745 Wm’

The value of J; 15 determimed from proportionmg the resistances between J/; and Jj, so that
h-h -4k
20 2045

and
h=T316=Ep, =0T

Finally, we obtain the temperature of the nsulated surface as

1/4
7316
h=(—————] =5994K [619°F]
5.669 x 10-8

B Comment

Note, once again_ that we have made use of the J = Ej, relation i two instances in this example,
but for two different reasons. J, = E}, because surface 2 1s msulated and there is zero current
flow through the surface resistance, while J3 = Ej, because the surface resistance for surface 3

approaches zero as A3 — oo.
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